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Proudman resonance amplifies the oceanic forced wave beneath moving atmospheric
pressure disturbances. The amplification varies with water depth; consequently, the
forced wave beneath a disturbance crossing topography radiates transient free waves.
Transients are shown to magnify the effects of Proudman resonance for disturbances
crossing the coast or shelf at particular angles. A Snell like reflection law gives rise
to a type of resonance for relatively slow moving disturbances crossing a coast in an
otherwise flat-bottomed ocean. This occurs for translation speeds less than the shallow
water wave speed for disturbances approaching the coast at a critical angle given by
the inverse sine of the Froude number of the disturbance. A disturbance crossing
the shelf at particular angles can also excite seiche modes of the shelf via generation
of a transient at the continental slope. Beyond a typically small angle of incidence,
transients generated by a disturbance crossing the continental slope and coast will
be trapped on the shelf by internal reflection. The refraction law for a fast-moving
forced wave crossing an ocean ridge at greater than a small angle of incidence also
results in trapped free-wave transients with tsunami-like periods propagating along
the ridge. The subcritical resonance, excitation of shelf modes and trapping of the
transients may have implications for storm surges and the generation of destructive
meteotsunami.

1. Introduction
Disturbances in atmospheric pressure due to storms or fronts force sea-level

variations of O(10 cm) due to the inverted barometer effect (Doodson 1924).
Under moving disturbances, this effect is amplified by Proudman resonance (Lamb
1932; Proudman 1953). The amplification of the forced wave in a flat-bottomed
ocean becomes large as the translation speed of the disturbance approaches the
shallow water wave speed. The amplitude of the forced wave due to a disturbance
travelling parallel to the coast over a linearly sloping bottom can also become large
because of Greenspan resonance, which occurs for translation speeds near one of
the coastally trapped edge-wave modes (Greenspan 1956). Both Proudman and
Greenspan resonances give large responses at critical translation speeds corresponding
to particular wave speeds. Here a resonance is shown to occur when a relatively slow
moving forced wave in a flat-bottomed ocean crosses a vertical coast at a particular
angle. This resonance occurs at translational speeds less than the shallow water wave
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speed, i.e. at subcritical speeds, and may be a new example of ‘classic’ resonance in
the sense that it results from linear barotropic wave dynamics.

Garrett (1970) showed how free waves are generated when an atmospheric
disturbance crosses a step. Garrett developed this generation mechanism as an
explanation for why tide gauges recorded disturbances because of the Krakatoa
eruption before oceanic waves could have arrived at San Francisco by the shortest
route, speculating this may be due to focusing of the free waves generated when
the atmospheric blast wave due to the eruption crossed the Aleutian and Hawaiian
ridges. The extremely high propagation speeds for the atmospheric wave, 300 m s−1,
exceeded the shallow water wave speed on both the deep and shallow sides of the
step. Garrett (1970) noted the possibility of typically slow moving weather crossing
ridges and creating free waves, commenting that they would be too small to be
detected, though Vennell (2007) (hereafter V07) showed how, for less common fast
storms, the transients can have significant amplitudes on shelves and ridges. Garrett
(1970) focused on supercritical disturbances and did not explore the consequences
for subcritical disturbances crossing a step nor looked at the limit of reflection off a
vertical coast, which, as shown here, leads to a resonance.

V07 discussed how the forced oceanic wave beneath a small fast-moving storm
radiates long free-wave transients as it crosses the coast, continental slope or a
ridge at right angles. Transients reflected back into deep water are small, but those
transmitted into shallow water are significant, comparable in size to the enhanced
forced wave in shallow water due to Proudman resonance. Also, V07’s numerical
results demonstrated that a gentle continental slope, ten storm widths wide, did not
significantly reduce the amplitudes of the transients transmitted onto a shelf or a
ridge, when compared with those for a step. These linear free waves, referred to as
topographic transients, had periods comparable with the passage time of the storm.
This could be under an hour for small fast storms, e.g. storms traversing the Grand
Banks with translation speeds of up to 30 m s−1, which is comparable to the shallow
water wave speed over the Banks (Mercer et al. 2002).

When a free wave crosses a step into shallower water, refraction decreases the
propagation angle of the transmitted wave. In the absence of Coriolis effects, this
makes it unlikely that the energy of a free wave crossing onto a flat shelf or a ridge with
straight parallel depth contours can be trapped in shallow water by internal reflection,
though it can be trapped or focused by curved topography (Longuet-Higgins 1967).
In contrast, refraction increases the propagation angle of the transmitted transient
wave generated by a subcritical speed forced wave crossing from deep to shallow
water. This opens up the possibility of trapping the topographic transients generated
by a disturbance crossing a shelf or a ridge, which have periods too short for Coriolis
effects to be important. The trapped, transmitted and reflected transients generated
by a disturbance crossing the continental slope and coast may contribute to relatively
high frequency sea-level variability at locations far from where a disturbance crossed
the coast and may also excite resonant modes of shelves or inlets.

In this paper, it is shown that the transients generated at a vertical coast or step by
an obliquely incident atmospheric pressure disturbance may enhance coastal surges
under some storms, excite shelf seiches and may also contribute to understanding how
the effects of seemingly weak pressure fronts can be amplified to give large waves
which can result in destructive meteotsunami events at several locations around the
globe (Rabinovich & Monserrat 1998; Vilibić & Mihanović 2003; Monserrat, Vilibic
& Rabinovich 2006). For example, bursts of small atmospheric pressure variations of
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around 2–3 hPa propagating across Menorca Island at 20–30 m s−1 can excite a 10 min
period seiche with an amplitude of more than 1 m within Ciutadella inlet (Rabinovich
& Monserrat 1998). Specifically, this paper examines how the incident angle of the
forced wave determines the amplitudes and fates of the transients generated by
a disturbance crossing a coast, shelf or ridge. The paper uses deliberately simple
techniques, such as ray tracing, in order to clearly understand how reflection and
refraction govern the fates of the transients. Importantly, in two cases transients
are shown to magnify the effects of Proudman resonance for disturbances crossing
the coast or shelf at particular angles. The structure of this paper is as follows.
Section 2 develops the linear forced shallow water equations and gives solutions for
a forced wavefront crossing a coast and a step. The discussion explores a range of
consequences of the solutions, subcritical resonance, trapping of transients on a shelf
or a ridge, excitation of shelf modes, the effects of a finite breadth forced wavefront
as well as the potential impact on coastal storm surge.

2. Model solutions
A simple two-dimensional barotropic model for transient shallow water waves

generated by moving pressure disturbances over topography is developed. The moving
disturbance’s time scale is Tp = L/U , the time taken for it to pass a fixed observer,
where L is the width of the disturbance and U is its translation speed. This time
scale is assumed to be large enough that motions are governed by shallow water
dynamics, i.e. longer than far-infra gravity waves, but small compared to the earth’s
rotational period so that Coriolis effects can be neglected. The time scale falls in the
band where bottom friction can be neglected at zeroth order. In shallow water, the
hydrostatic balance gives the pressure at any depth −z as p = ρg(η − z) + pa(x, y, t),
where η is the displacement of the ocean’s surface and pa(x, y, t) is the atmospheric
pressure at the ocean’s surface due to the disturbance. The atmospheric pressure can
be defined in terms of the inverted barometer response as pa = −ρgηa , where ηa is
the ocean’s surface displacement under a stationary disturbance. A 1 hPa change in
air pressure gives rise to approximately a 1 cm change in sea level (Doodson 1924).
Neglecting rotational and bottom frictional effects, the linearized atmospherically
forced barotropic two-dimensional equations for shallow water motion in constant
water depth can be expressed as (Gill 1982)
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where u and v are the velocity components, (τ x, τ y) are the components of wind
stress and η is assumed small compared to the water depth h. Combining (2.1)–(2.3)
for constant water depth gives the linear forced two-dimensional wave equation
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− c2∇2η = −c2∇2ηa +

1

ρ
∇ · τ = −c2∇2F, (2.4)
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where c =
√

gh and ∇2 = (∂2/∂x2) + (∂2/∂y2). For convenience, the atmospheric
pressure forcing and the divergence of the wind stress have been combined and
written in terms of an equivalent displacement-like forcing F . If this combined
forcing due to a periodic disturbance translating at constant speed U at angle θ to
the x axis is F = η0 exp(ik(x cos θ + y sin θ − Ut)), then the steady state forced wave
solution to (2.4) is (Lamb 1932; Proudman 1953)

ηf =
η0

1 − Fr2
exp(ik(x cos θ + y sin θ − Ut)), (2.5)

where the Froude number of the disturbance is Fr = U/c. Equation (2.5) shows that
the sea-level response is amplified under a moving disturbance. This amplification
effect known as ‘Proudman resonance’ becomes large as Fr → 1. Like V07, the aspect
of (2.5) significant to this work is the dependence of the forced wave amplitude on
the water depth, which appears in the denominator of Fr. As the steady state forced
wave ηf moves over changes in water depth, transient free waves are generated. These
waves are generated by the interaction of the barotropic velocity, associated with the
forced wave, with the topography. For topography-oriented parallel to the y axis,
(2.1) gives the cross-topographic velocity associated with the forced wave as

uf =
Uη0 cos θ

h(1 − Fr2)
exp(ik(x cos θ + y sin θ − Ut)). (2.6)

Any transient waves reflected by the coast or a topographic step, or transmitted
across a step, will be assumed to have the form

ηr = Rη0 exp(ikr (−x cos θr + y sin θr − cr t)), (2.7)

ηt = T η0 exp(ikt (x cos θt + y sin θt − ct t)), (2.8)

where R and T are the reflection or transmission coefficients, k’s are the magnitudes
of the wavenumbers, c’s are the free-wave speeds and subscripts r and t indicate
reflected and transmitted waves.

The next two subsections give the transients due to an atmospheric disturbance
crossing a vertical coast and a topographic step (figure 1). Some of the solutions
presented here are trapped, i.e. have exponential decay in the −x direction. Thus,
it is convenient to use periodic solutions in the y direction in order to satisfy (2.4).
However, note that the amplitude of the forcing may be a function of the magnitude
of the wavenumber, i.e. η0(k), which may be the Fourier transform of a discrete
atmospheric event with a dominant wavenumber of 2π/L.

2.1. Disturbance crossing vertical coast and resonance

Before deriving the solution for the reflected wave due to an atmospheric disturbance
over a flat-bottomed ocean crossing a vertical coast, ray theory will be used to
determine the wavenumber and angle of the reflected wave (figure 1a). For the
phase structures of the forced and reflected waves to match at the coast, their wave
frequencies and the components of their wavenumbers parallel to the coast must
match, i.e. comparing (2.7) with (2.5) gives kr = Fr k and

sin θr =
sin θ

Fr
. (2.9)

For a free wave hitting the coast, the angle of reflection equals the angle of incidence.
For a forced wave, the reflection angle obeys a Snell-like law (2.9) due to the differing
wave speeds. In this modified reflection law, the angle of reflection is greater than
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Figure 1. Geometry of forced and transient ocean waves due to an atmospheric disturbance
obliquely crossing topography. Large arrows give wavenumber vectors making up the
disturbance or the free-wave transients. (a) Crossing a coast, forced and a reflected free
wave. (b) Crossing a step, forced wave plus reflected and transmitted free waves. The forced
wave grows as it crosses the step because of the enhanced Proudman resonance (2.5).

the incidence angle for subcritical disturbances, Fr < 1, and smaller for supercritical
disturbances, Fr > 1. Another consequence of the modified reflection law is that there
is no reflected free wave if θ exceeds a critical angle

θcrit = sin−1 Fr, (2.10)

which can only occur for subcritical speed disturbances.
The solution for the reflected wave (2.7), which satisfies the velocity boundary

condition that uf + ur =0 at x =0, is

ηr = Rη0

{
exp(ik(−xFr cos θr + y sin θ − Ut)) θ < θcrit

exp(αkx) exp(ik(y sin θ − Ut) − iπ/2) θ > θcrit ,
(2.11)

where

R =
Fr2 cos θ

(1 − Fr2)

√
|Fr2 − sin2 θ |

, (2.12)

where α =
√

sin2 θ − Fr2 and from (2.9) cos θr =
√

Fr2 − sin2θ/F r . There are two types
of solutions. For θ < θcrit , the reflected wave is similar to the forced wave, except that

it travels away from the coast with an x wavenumber scaled by
√

Fr2 − sin2θ . For
θ > θcrit , the reflected wave decays exponentially with scale ‘1/αk’ and has wavefronts
at right angles to the coast which travel with the forcing. Equation (2.12) contains
two resonances: Proudman resonance and the other occurs at the critical incident
angle, θcrit . The latter resonance occurs only for subcritical Froude numbers, when
the phase speed component of the disturbance along the coast, U/ sin θ , matches the
free-wave speed c (2.9). To be valid, the simple linear model requires the reflected
wave’s amplitude to remain small compared with the water depth. Thus, near θcrit
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Figure 2. Magnitude of the reflection coefficient R from (2.12) for the transient wave generated
by an atmospherically forced pressure wave crossing a vertical coast. (a) R for Fr = 0.9 for a
range of disturbance incident angles. (b) Contours of R for a range of disturbance incident
angles and Froude numbers. The thick dashed lines show the two resonances.

resonance will restrict the application of the model to very weak atmospheric forcing
and, strictly, the model cannot be applied at θcrit .

The term R in (2.12) applies to disturbances crossing from the ocean to the land
and to those crossing from the land to the ocean. Both propagation directions can
produce resonance. Also, while an elevated forced wave generates an elevated reflected
wave for a disturbance moving onshore, 0 � θ < 90◦, a disturbance moving offshore,
90◦ < θ � 180◦, generates a depressed reflected wave.

Subcritical resonance results from the combination of the boundary condition and
the modified reflection law (2.9) giving reflected wave angles greater than the incident
angle for Fr < 1. The reflected wave’s cross-coast velocity is proportional to the x

derivative of (2.11), i.e. proportional to cos θr or kα, both of which are zero at θcrit . As
the incident angle approaches θcrit , R must increase to balance the decreasing cos θr

or kα in order that their product can give a finite velocity to cancel the forced wave’s
velocity (2.6) at the coast. Thus to satisfy the boundary condition, R must be singular
at θcrit , i.e. resonant. For supercritical speed disturbances, there is no critical angle or
resonance and the reflection is always a free wave because the reflection angle (2.9) is
less than the incident angle.

Figure 2(a) gives the reflection coefficient for Fr= 0.9 for which θcrit =64◦. The
reflected wave has a similar amplitude to the forced wave up to an incidence angle
of 45◦ and is large around the critical angle. The reflected wave amplitude reduces
to zero as the incident angle approaches 90◦ because the forced wave moving along
the coast has zero cross-coast velocity (2.6) and hence requires no reflected wave to
satisfy the coastal boundary condition. Figure 2(b) shows the reflection coefficient,
clearly showing Proudman resonance at Fr ≈ 1. The lower dashed line shows how
subcritical resonance varies with angle of incidence. This figure also shows that
the angular width of the region giving a large response widens with increasing
Froude number, which makes a large response more likely at high subcritical Froude
numbers.

2.2. Disturbance crossing a step

When an atmospherically forced wave crosses a step, both a reflected and a transmitted
transient free wave are created (figure 1b). Again using ray theory, the frequency and
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Figure 3. Wavefront patterns for a subcritical forced wave crossing a step. There are three
cases depending on the angle of incidence. (a) Reflected and transmitted waves propagate
away as free waves. (b) The reflected wave is trapped at the step and the transmitted is a free
wave. (c) Reflected and transmitted waves are trapped at the step.

the wavenumber parallel to the step of both the reflected and transmitted waves must
match those of the forced wave. Thus, from comparing (2.7) and (2.8) with (2.5) gives

sin θr =
sin θ

Frd

, sin θt =
sin θ

Frs

, (2.13)

i.e. Snell’s law reinterpreted for forced waves, where Frd =U/cd and Frs = U/cs are
the Froude numbers on each side of the step in figure 1(b). The subscripts d and
s indicate the deep and shallow sides of the step. Equation (2.13) gives two special
angles

θtrapR = sin−1 Frd, θtrapT = sin−1 Frs . (2.14)

These two angles give three cases for the character of the transient wave pattern
for subcritical speed disturbances (figure 3). (i) For small incident angles, θ < θtrapR ,
reflected and transmitted waves freely propagate away from the step as in V07. (ii)
For θtrapR < θ < θtrapT , the reflected wave is a trapped wave decaying exponentially
and the transmitted wave freely propagates away. (iii) For θ > θtrapT , reflected and
transmitted waves are both trapped waves with wavefronts normal to the step and
decay exponentially with distance from the step.

The reflected wave has the form

ηr = Rη0 exp(ik(y sin θ − Ut))

{
exp(−ikαdx) θ � θtrapR,

exp(kα∗
dx) θ > θtrapR,

(2.15)

where αd =

√
Fr2

d − sin2 θ and α∗
d =

√
sin2 θ − Fr2

d . The transmitted wave has the form

ηt = T η0 exp(ik(y sin θ − Ut))

{
exp(ikαsx) θ � θtrapT ,

exp(−kα∗
s x) θ > θtrapT ,

(2.16)

where αs =

√
Fr2

s − sin2 θ and α∗
s =

√
sin2 θ − Fr2

s . Matching the elevation and mass

transport due to the forced and reflected waves on the deep side of the step to the
enhanced forced and transmitted waves on the shallow side gives the reflection and
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(b) For a range of Froude numbers on the shallow side for θ = 60◦ and Frd = 0.1.

transmission coefficients as the amplitudes of

R = ΔFr2
d

αs − Fr2
s cos θ

αdFr2
s + αsFr2

d

, (2.17)

T = −ΔFr2
s

αd + Fr2
d cos θ

αdFr2
s + αsFr2

d

, (2.18)

where

Δ =
Fr2

s − Fr2
d(

1 − Fr2
s

) (
1 − Fr2

d

) , (2.19)

which is the fractional difference in forced wave amplitude between shallow and deep
water, and also encapsulates Proudman resonance on both sides of the step. Note
that reflection and transmission coefficients (2.17) and (2.18) can cover all three cases
of wave patterns if αd and αs are allowed to be imaginary at larger incident angles.
As hs → 0 in (2.17) R → Frd cos(θ)/(1 − Fr2

d) cos θr , which is the same as for coastal
reflection (2.12). The first cases in (2.15)–(2.18) are equivalent to those of Garrett
(1970) for a disturbance which has supercritical speed on both sides of the step. He
did not explore subcritical disturbances and hence did not look at the trapped cases.
The coefficients, (2.17) and (2.18), are given for disturbances crossing from deep to
shallow water. The coefficients for disturbances moving from shallow water to deep
water have the same form but differ in the signs of some terms, but are not presented
here because of space limitations.

Figure 4(a) demonstrates that, for small Frd , the transmitted wave’s amplitude
varies little with angle of incidence and the reflected wave amplitude is near zero.
Unlike coastal transients, transients are required for θ = 90◦ as the differing forced
wave amplitudes on the two sides of the step require trapped waves on both sides
to ensure continuity of surface elevation across the step. For a small deep water
Froude number, Frd → 0, (2.17) and (2.18) confirm that for all three cases R → 0 and
T → −Fr2

s /(1 − Fr2
s ). Thus, the transmitted wave amplitude is approximately Fr2

s times
that of the enhanced forced wave in shallow water for all incident angles. For the
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(a)    θ < θtrapR (b)    θtrapR < θ < θcrit

(c)    θ < θcrit (d)
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Forced wave
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Figure 5. Schematic ray paths for the transients generated by a subcritical speed atmospheric
pressure disturbance crossing the continental shelf. Note θtrapT is the same as the coastal critical
angle θcrit . (a) θ < θtrapR transients are leaked. (b) θtrapR < θ < θcrit free-wave transient trapped
on shelf by internal reflection. (c) θ > θcrit transients are trapped against the step and coast.
(d ) Idealized topography of the continental shelf.

example in figure 4(a), the forced wave amplitude, (2.5), is around five times the
amplitude of the forcing, η0.

Figure 4(b) shows the amplitudes of the forced and transmitted waves for a range
of Froude numbers for one incident angle. However, the transmitted amplitude curve
would be almost the same for any incident angle due to the near invariance of T

for small Frd . For subcritical Frs , increasing Froude number increases the size of
the transmitted wave relative to the forced wave and they are of similar size around
Frs ≈ 1.

3. Discussion
3.1. Crossing a continental shelf

The solutions for an atmospheric disturbance crossing a step and vertical coast can
be combined to discuss a disturbance crossing the continental shelf. The idealized
shelf topography comprises a step change in depth at the continental ‘slope’, a flat
shelf and a vertical coast (figure 5d ). Again the results discussed in this section apply
to on- and offshore-moving disturbances, with propagation direction affecting only
the sign or phase of the transients.

When a disturbance crosses the continental ‘slope’ and the coast, two separate
free-wave transients are generated on the shelf (figure 5a). The fate of these transients
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depends on the incidence angle of the disturbance. As the disturbance crosses the
‘slope’, a small transient free wave, R1, is reflected back into deep water and a
larger free wave, T 1, is transmitted onto the shelf. Here T 1 reflects off the coast and
from (2.13) impinges on the shelf break at an angle of sin−1 sin θ Fr−1

s . The transient
reflected from the disturbance crossing the coast, R2, also impinges on the shelf
break at this same angle, (2.9). Both T 1 and R2 will each create new transmitted and
reflected free waves as they cross the ‘slope’. Snell’s law for free waves crossing a step
into deeper water shows that they will undergo total internal reflection if the incident
angle exceeds sin−1(cs/cd) (LeBlond & Mysak 1978). Thus, the free-wave transients
on the shelf will be totally internally reflected by the shelf break if the incident angle
of the forced wave exceeds the typically small angle

θ � sin−1 Frd = θtrapR. (3.1)

Figure 5 shows the three cases of forced wave incident angles. (i) For small angles,
θ < θtrapR , T 1 and R2 bounce back and forth across the shelf, with a small transient
being transmitted into the deep ocean during each encounter with the shelf break,
as in V07. These leaked transients progressively reduce the amplitudes of T 1 and
R2 as they propagate along the shelf. (ii) For θtrapR < θ < θcrit , T 1 and R2 are free
waves trapped on the shelf maintaining their amplitudes as they propagate along it
(figure 5b). As θ → θtrapT = θcrit , R2 becomes large because of the coastal resonance,
while T 1’s amplitude remains almost constant. (iii) For θ > θcrit , R2 becomes trapped
against the coast (figure 5c) and propagates with the forcing. In addition, both T 1
and the typically small R1 are trapped at the step which constitutes the continental
slope.

3.2. Excitation of shelf modes

Note that θcrit = sin−1 Frs is the incident angle giving resonance for a disturbance
crossing the coast, but it is also the angle at which the transients over the shelf, T 1
and R2, change from having sinusoidal to exponential cross-shelf structure. Thus, for
θtrapR < θ < θcrit , the internally reflected transients over the shelf (figure 5b) can be
expressed as standing waves and for θ > θcrit as a pair of exponentials. For example,
the transient T 1, which satisfies the coastal boundary condition at x = W , can be
expressed as

ηT 1 = T η0 exp(ik(y sin θ − Ut))

{
cos(kαs(x − W )) θtrapR < θ < θcrit ,

cosh(kα∗
s (x − W )) θ � θcrit .

(3.2)

Matching the elevation and mass transport at the step, x = 0, of the exponentially
decaying reflected wave and the deep water forced wave with this transmitted wave
and the enhanced forced wave over the shelf gives the transmission coefficient as the
amplitude of

T = ΔFr2
s

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α∗
d − iFr2

d cos θ

αsFr2
d sin kWαs − α∗

dFr2
s cos kWαs

θtrapR < θ < θcrit

α∗
d − iFr2

d cos θ

−α∗
s Fr2

d sinh kWα∗
s − Fr2

sα
∗
d cosh kWα∗

s

θ � θcrit .

(3.3)

For the step, the transmitted free-wave transient (2.18) is near uniform with incident
angle when Frd is small and, at high subcritical Frs , is comparable in size with the
enhanced forced wave on the shallow side of the step (figure 4). In contrast, the
standing-wave transient over a shelf (figure 6a) can have amplitudes many times
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Figure 6. Response of a shelf to a forced wave crossing the continental shelf. (a) Amplitude
of transmitted standing wave transient T 1, (3.3), relative to the amplitude of the forced wave
over the shelf as a function of shelf width and incident angle for Frd = 0.1 and Frs = 0.9. The
lower thick dashed line represents the width and angle combinations which resonate with a
mode 1 shelf seiche, whereas the upper left dashed line represents the width and incident angle
combinations which resonate with mode 2. (b) Value of kW for a mode 1 shelf seiche when
Frd = 0.1 from (3.4).

larger than those in the forced wave over the shelf for some combinations of incident
angles and shelf widths. These combinations between θtrapR and θcrit occur when the
forced wave excites a seiche mode of a step shelf, given by Snodgrass, Munk &
Miller (1962), via the generation of a transmitted transient T 1 at the shelf break.
Figure 6(a) demonstrates that at high incident angles a short wavelength or a wide
shelf is required to excite mode 1 and that on wide shelves either mode 1 or mode 2
may be excited depending on the incident angle.

When the denominator of (3.3) vanishes, the forced wave excites shelf modes and
its wavenumber must satisfy

kW =
1

αs

(
tan−1

(
Fr2

sα
∗
d

Fr2
dαs

)
+ nπ

)
, θtrapR < θ < θcrit , n = 0, 1, . . . (3.4)

For θ � θcrit , no mode is excited because there is no zero in the denominator of (3.3)
in this range, which gives a trapped wave in deep water. The modes resonate when the
phase speed of the disturbance along the coast matches the alongshore phase speed
of one of Snodgrass et al.’s trapped shelf modes. To give a trapped mode on the shelf,
Snodgrass et al. require the phase speed of the mode along the shelf to lie between
cs and cd . For an obliquely incident forced wave, this translates into the condition
θtrapR < θ < θcrit . Figure 6(b) shows the value of kW required to excite shelf mode 1.
Except near the critical angle, kW is between 1 and 3, so generally disturbances with
wavelengths between 2 and 5 times the shelf width can have a magnified response to
the forcing, if their incident angle and Froude numbers approximately satisfy (3.4),
particularly at the coastal anti-node. Again, like the coastal resonance, the assumed
linearity of the model restricts its applicability near the resonant incident angles, and
the transient solutions for on- and offshore-moving disturbances differ only in sign.

Figure 7 shows the cross-shelf structure of mode 1. For the two cases with θ just
above θtrapR , mode 1 amplitudes reduce by half across the shelf, but in deep water
decay is slow for these marginally trapped cases. For the cases with incident angles
near θcrit , there is significant decay across the shelf and rapid decay in deep water.
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Thus, modes excited by near critical incident angle disturbances exhibit stronger
trapping than those with smaller incident angles.

Greenspan resonance occurs when the translation speed of a point pressure
disturbance moving parallel to the coast matches the alongshore speed of a Stokes
edge wave mode for a linearly sloping bottom. Here resonant excitation occurs when
the alongshore component of the disturbance’s phase speed matches the alongshore
propagation speed of one of Snodgrass et al.’s seiche modes for a step shelf. Thus,
the resonant excitation in (3.3) is conceptually equivalent to Greenspan resonance for
forced wavefronts traversing a step shelf, but extended to allow for angle of incidence.
Note that (3.3) also contains Proudman resonance in the Δ factor, thus the excitation
magnifies the effects of the enhanced forced wave over the shelf.

The standing wave form of T 1 is forced by the disturbance crossing the shelf break.
The standing wave T 1 must satisfy matching conditions at the shelf break and a
zero velocity condition at the coast and, consequently, resonates when its cross-shelf
structure has an odd number of quarter wavelengths. Although T 1 is forced at the
shelf break, the transient R2 (figure 5b) is forced at the coast. R2 and its reflection
from the shelf break can also be expressed as a standing wave for θtrapR < θ < θcrit .
The standing wave form of R2 is matched to the forced wave at the coast and, at
the shelf break, to a trapped decaying exponential wave in deep water. The standing
wave form of R2 can exchange water with this decaying exponential. Hence, a forced
wave crossing the coast does not excite shelf modes.

3.3. Crossing an ocean ridge

A ridge can be approximated by a parallel pair of back-to-back steps. When a free
shallow water wave crosses from deep water onto the ridge, refraction causes a
decrease in the angle of propagation. From Snell’s law, the maximum transmission
angle for the wave on the ridge is sin−1(cs/cd). Thus, the angle with which the
transmitted wave on the ridge impinges on the far side of the ridge will generally be
less than that required for internal reflection and trapping on the ridge is unlikely.
Unlike free waves, the transmission angle of the transient generated by a subcritical
speed forced wave crossing onto the ridge is larger than the incident angle, making
trapping possible. As for the shelf in the last section, trapping occurs for a forced wave
incident at greater than the typically small angle of θtrapR . When a forced wave event
due to low atmospheric pressure crosses a ridge at greater than θtrapR , two trapped
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free-wave transients propagating along the ridge are generated: a depressive transient
from crossing onto the ridge and, trailing slightly behind, an elevated transient from
leaving the ridge. For a narrow ridge, the two transients will be generated so close
together that they will almost cancel out, giving little trapped energy. Wider ridges
will give larger trapped waves up to the limit of T (2.18), i.e. comparable to the
enhanced forced wave in shallow water for high subcritical disturbance speeds (2.5).
Like R2 on the shelf, the ability of the internally reflected transients to exchange fluid
with a trapped deep water wave means a forced wave crossing a ridge also does not
excite seiche modes of the ridge.

3.4. Finite breadth disturbances

The solutions presented here are for forced waves with infinitely broad wavefronts,
so are essentially rotated one-dimensional solutions. The two-dimensional transients
from a subcritical circular point disturbance spread in all directions away from the
location where the disturbance crosses the coast or shelf break. However, amplitudes
are higher in the direction of their propagation (figure 8a) as demonstrated by the
two-dimensional numerical solutions in V07, and thus transients have a preferred
direction given by their ray paths. Radial spread influences the degree to which the
energy of the transients is trapped on the shelf or ridge. Transients from a circular
disturbance crossing a shelf will impinge on the shelf break at a range of incident
angles, some less than the angle required for internal reflection (figure 8a). Thus, with
successive reflections from the shelf break and coast, the transients will leak energy
into deep water, decaying as they progress along the shelf. As the forced wave’s angle
of incidence increases towards the critical angle, the transients’ preferred directions
become more aligned with the shelf and more of the spreading transient energy
will be internally reflected back onto the shelf. More work is required to quantify
the trapping of transient energy due to finite breadth disturbances, potentially using
Greens functions; however, trapping will be the strongest for disturbances with
incident angles at and beyond the critical angle.
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3.5. Storm surge

A subcritical storm crossing a steep coast near the critical angle will generate a large
elevated transient, R2, travelling nearly parallel to the coast and trapped on the shelf,
resulting in transient wave energy, which can enhance storm surge heights locally and
may impact distant coastal areas with long period waves.

The transmitted transient T 1 also plays a role in storm surge by influencing how
quickly an atmospheric-pressure-induced surge develops over the shelf. Proudman
resonance is enhanced as a storm moves from deep water onto the shelf. This
enhancement does not occur instantaneously after crossing the shelf break, but
develops slowly as the forced wave and the transmitted wave T 1 separate because of
their differing speeds and propagation directions. V07 discussed separation for storms
crossing the shelf at right angles. A measure of the rate of separation is the distance
between the centre of a circular storm and the centre of the transmitted free wave
after crossing the shelf break. Separation can also be viewed in another way. As a
particular section of an oblique forced wave’s crest crosses the shelf break, it creates a
transmitted wave. Separation is the distance between the section of the forced wave’s
crest which generated the transient and the section of the transient it generated. In
other words, separation is the distance between the points on both waves which were
at the shelf break at the same time and place. The components of this separation
are

(Δx, Δy)/L =

(
cos θ − cos θt

Frs

, sin θ − sin θt

Frs

)
, (3.5)

where the separation is expressed as a fraction of the storm width, L, i.e. the distance
travelled by the storm in one time scale Tp . Note that θt is given by (2.13) for
θ < θcrit and is 90◦ for θ > θcrit . This measure (3.5) underestimates the rate at which
the enhanced Proudman resonance develops for point disturbances, because of radial
spread of T 1, but is a useful relative measure. Figure 8(b) shows the magnitude of
the separation for a range of incident angles and Froude numbers. Separation, and
hence enhancement of Proudman resonance, develops more quickly for very slow or
very fast disturbances, because the speed differential between storm and transient is
large. For example, for Frd = 0.1 and Frs = 0.4, by the time the storm has moved one
width the transient is two widths away and the enhanced Proudman resonance on the
shelf is nearly fully developed. However, from (2.19), the enhancement of Proudman
resonance over the shelf for this case is only 18 %. For high subcritical Frs , the
enhancement is much larger, e.g. around 400 % for Frd = 0.1 and Frs = 0.9, but takes
longer to develop. Given that shelf widths may be comparable to the diameter of a
small storm, the enhanced Proudman resonance may not have time to fully develop
before the storm crosses the coast. Hence, shelf width will limit the storm surge
associated with atmospheric pressure. The significant aspect of figure 8(b) is that for
high subcritical Frs , the separation occurs more rapidly for storms crossing the shelf
break near the critical angle, θcrit . Consequently, even without subcritical resonance,
surge at the coast is larger under fast subcritical storms which cross narrow shelves
near this particular angle.

4. Conclusions
The reflection and refraction laws for forced waves determine how the incident

angle of an atmospheric disturbance influences the fates of the transients generated
as it crosses topography. In particular, for subcritical speed disturbances the angle of
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reflection at a coast and the transmission angle at a step are larger than the incident
angle. As a result, (a) the coastally reflected wave becomes resonant at θcrit = sin−1 Frs ,
and at greater incident angles it is trapped; and (b) the coastally reflected transient, R2,
and the transients transmitted onto a shelf or a ridge, T 1, are trapped for forced waves
incident at angles greater than the typically small θtrapR = sin−1 Frd . Consequently, for
θtrapR < θ < θcrit , a shelf or a ridge can act as a waveguide for relativity high frequency
sea-level energy derived from atmospheric disturbances, which may excite seiches
within inlets or on the shelf. For point atmospheric disturbances, the degree to which
transient energy is trapped within the waveguide increases as the angle of incidence
increases towards the critical angle.

Like Proudman resonance, subcritical resonance is independent of the forcing’s
wavenumber, hence gives the same magnification both for periodic pressure
disturbances and for discrete atmospheric events. A storm crossing a coast near
the critical angle can generate a large transient travelling along the shelf, enhancing
the resulting storm surge. Even in the absence of subcritical resonance, the transient
which is generated at the continental shelf break can also affect the magnitude of
the storm surge. The enhanced Proudman resonance over a shallow shelf takes time
to develop, because the forced and transmitted waves must separate. This separation
occurs more rapidly near the critical angle of incidence, enhancing surges at the coast
for storms crossing narrow shelves near this angle.

In two situations the effects of the enhanced Proudman resonance over the shelf
are further magnified by transients generated by disturbances incident at particular
angles. Firstly, a forced wave crossing the coast at the critical angle can cause
a resonance via the generation of R2. Secondly, a forced wave crossing the shelf
break at particular angles between θtrapR and θcrit can excite resonant modes of the
shelf via the generation of T 1. This excitation is conceptually equivalent to Greenspan
resonance, extended to allow for the angle of incidence. Because of these seiche modes,
the spectral components of the forced wave crossing the shelf, which approximately
satisfy (3.4), may contribute to seiche energy over the shelf, which persists long
after the disturbance has crossed the coast and in particular may enhance sea-level
variability at the coastal anti-node.

The comments of Jérôme Sirven, the students of the Ocean Physics Group and the
reviewers were much appreciated.
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